Uniqueness of limit cycles in predator–prey system: the role of weight functions ✩
نویسنده
چکیده
We consider a Gause type model of interactions between predator and prey populations. Using the ideas of Cheng and Liou we give a sufficient condition for uniqueness of the limit cycle, which is more general than their condition. That is, we include a kind of weight function in the condition. It was motivated by a result due to Hwang, where the prey isocline plays a role of weight function. Moreover, we show that the interval where the condition from Hwang’s result is to be fulfilled can be narrowed. 2002 Elsevier Science (USA). All rights reserved.
منابع مشابه
Stability analysis of a fractional order prey-predator system with nonmonotonic functional response
In this paper, we introduce fractional order of a planar fractional prey-predator system with a nonmonotonic functional response and anti-predator behaviour such that the adult preys can attack vulnerable predators. We analyze the existence and stability of all possible equilibria. Numerical simulations reveal that anti-predator behaviour not only makes the coexistence of the prey and predator ...
متن کاملUniqueness of Limit Cycles in Cause-Type Models of Predator-Prey Systems
This paper deals with the question of uniqueness of limit cycles in predator-prey systems of Gause type. By utilizing several transformations, these systems are reduced to a generalized Lienard system as discussed by Cherkas and Zhilevich and by Zhang. As a consequence, criteria for the uniqueness of limit cycles are derived, which include results of Cheng and is related to results in Liou and ...
متن کاملExistence of Limit Cycles in a Predator-prey System with a Functional Response
We consider the existence of limit cycles for a predator-prey system with a functional response. The system has two or more parameters that represent the intrinsic rate of the predator population. A necessary and sufficient condition for the uniqueness of limit cycles in this system is presented. Such result will usually lead to a bifurcation curve. 2000 Mathematics Subject Classification. 92D40.
متن کاملThe Dynamical Analysis of a Delayed Prey-Predator Model with a Refuge-Stage Structure Prey Population
A mathematical model describing the dynamics of a delayed stage structure prey - predator system with prey refuge is considered. The existence, uniqueness and bounded- ness of the solution are discussed. All the feasibl e equilibrium points are determined. The stability analysis of them are investigated. By employ ing the time delay as the bifurcation parame...
متن کاملGeometric Criteria for the Nonexistence of Cycles in Gause-type Predator-prey Systems
The global stability of a multi-species interacting system has apparently important biological implications. In this paper we study the global stability of Gause-type predator-prey models by providing new criteria for the nonexistence of cycles and limit cycles. Our criteria have clear geometrical interpretations and are easier to apply than other methods employed in recent studies. Using these...
متن کامل