Uniqueness of limit cycles in predator–prey system: the role of weight functions ✩

نویسنده

  • Karel Hasík
چکیده

We consider a Gause type model of interactions between predator and prey populations. Using the ideas of Cheng and Liou we give a sufficient condition for uniqueness of the limit cycle, which is more general than their condition. That is, we include a kind of weight function in the condition. It was motivated by a result due to Hwang, where the prey isocline plays a role of weight function. Moreover, we show that the interval where the condition from Hwang’s result is to be fulfilled can be narrowed.  2002 Elsevier Science (USA). All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability analysis of a fractional order prey-predator system with nonmonotonic functional response

In this paper, we introduce fractional order of a planar fractional prey-predator system with a nonmonotonic functional response and anti-predator behaviour such that the adult preys can attack vulnerable predators. We analyze the existence and stability of all possible equilibria. Numerical simulations reveal that anti-predator behaviour not only makes the coexistence of the prey and predator ...

متن کامل

Uniqueness of Limit Cycles in Cause-Type Models of Predator-Prey Systems

This paper deals with the question of uniqueness of limit cycles in predator-prey systems of Gause type. By utilizing several transformations, these systems are reduced to a generalized Lienard system as discussed by Cherkas and Zhilevich and by Zhang. As a consequence, criteria for the uniqueness of limit cycles are derived, which include results of Cheng and is related to results in Liou and ...

متن کامل

Existence of Limit Cycles in a Predator-prey System with a Functional Response

We consider the existence of limit cycles for a predator-prey system with a functional response. The system has two or more parameters that represent the intrinsic rate of the predator population. A necessary and sufficient condition for the uniqueness of limit cycles in this system is presented. Such result will usually lead to a bifurcation curve. 2000 Mathematics Subject Classification. 92D40.

متن کامل

The Dynamical Analysis of a Delayed Prey-Predator Model with a Refuge-Stage Structure Prey Population

A mathematical model describing the dynamics  of a  delayed  stage structure prey - predator  system  with  prey  refuge  is  considered.  The  existence,  uniqueness  and bounded- ness  of  the  solution  are  discussed.    All  the  feasibl e  equilibrium  points  are determined.  The   stability  analysis  of  them  are  investigated.  By  employ ing  the time delay as the bifurcation parame...

متن کامل

Geometric Criteria for the Nonexistence of Cycles in Gause-type Predator-prey Systems

The global stability of a multi-species interacting system has apparently important biological implications. In this paper we study the global stability of Gause-type predator-prey models by providing new criteria for the nonexistence of cycles and limit cycles. Our criteria have clear geometrical interpretations and are easier to apply than other methods employed in recent studies. Using these...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003